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Abstract

A new set of consistent boundary conditions for Yee scheme approximations of wave equations in two space dimen-
sions are developed and analyzed. We show how the classical staircase boundary conditions for hard reflections or, in
the electromagnetic case, conducting surfaces in certain cases give O(1) errors. The proposed conditions keep the structure
of the Yee scheme and are thus well suited for high performance computing. The higher accuracy is achieved by modifying
the coefficients in the difference stencils near the boundary. This generalizes our earlier results with Gustafsson and Wahl-
und in one space dimension. We study stability and convergence and we present numerical examples.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Yee scheme for the Maxwell’s equations was introduced in 1966, [19] and has since then been the
method of choice in many electro-magnetic simulations. This finite difference time domain (FDTD) technique
is simply based on centered explicit differencing on staggered grids. We will consider two space dimensions and
the TM and TE modes are then given by the following equations, respectively:
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In these equations E, H, l and e denote the electric and magnetic fields, magnetic permeability and electric
permittivity, respectively. We will however use the notation of acoustic waves as was done in the related papers
[5,16],
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where ðx; yÞ 2 X � R2 and t > 0. Here, p denotes pressure and u, v the x- and the y-velocity components
respectively.

Eqs. (1)–(3) are all equivalent. With the substitutions p ¼ Ez, Hx ¼ �v and Hy ¼ u and 1=l ¼ b, 1=e ¼ a, we
get (3) from (1), and similarly with the substitutions H z ¼ p, Ey ¼ �u, Ex ¼ v and 1=l ¼ b, 1=e ¼ a, we obtain
(3) from (2). We will use (3) for the rest of the paper.

Introduce a space step Dx ¼ Dy ¼ h and a time step Dt. The Yee scheme is defined on a grid that is stag-
gered in both space and time. The variable p is stored at half grid points in both x and y, ðxjþ1=2; ylþ1=2Þ at half
time levels tnþ1=2. The u and v variables are stored at full time levels tn, u at full points in x and half points in y,
ðxj; ylþ1=2Þ, and v at half points in x and full points in y, ðxjþ1=2; ylÞ, as indicated in Fig. 1. Here, xj ¼ jh,
xjþ1=2 ¼ ðjþ 1=2Þh, yl ¼ lh, ylþ1=2 ¼ ðlþ 1=2Þh, and tn ¼ nDt, tnþ1=2 ¼ ðnþ 1=2ÞDt.

The Yee scheme for (3) is
pnþ1=2
jþ1=2; lþ1=2 ¼ pn�1=2

jþ1=2; lþ1=2 þ Dt ajþ1=2; lþ1=2 Dþxun
j; lþ1=2 þ Dþyvn

jþ1=2; l

� �
unþ1

j; lþ1=2 ¼ un
j; lþ1=2 þ Dt bj; lþ1=2D�xp

nþ1=2
jþ1=2; lþ1=2;

vnþ1
jþ1=2; l ¼ vn

jþ1=2; l þ Dt bjþ1=2; lD�ypnþ1=2
jþ1=2; lþ1=2;

ð4Þ
with the difference operators defined by
Fig. 1. The staggered grid in space and time.
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Dþxuj;lþ1=2 ¼ ðujþ1;lþ1=2 � uj;lþ1=2Þ=h;

Dþyvjþ1=2;l ¼ ðvjþ1=2;lþ1 � vjþ1=2;lÞ=h;

D�xpjþ1=2;lþ1=2 ¼ ðpjþ1=2;lþ1=2 � pj�1=2;lþ1=2Þ=h;

D�ypjþ1=2;lþ1=2 ¼ ðpjþ1=2;lþ1=2 � pjþ1=2;l�1=2Þ=h:
The remarkable success of this FDTD method is based on several virtues. The scheme is second order,
explicit and energy conserving. It uses a structured grid, which easily allows for parallel computing and the
staggered structure keeps the storage at a minimum.

The natural boundary conditions for (3) is that velocity normal to the boundary vanishes,
n̂ � ðu; vÞ ¼ 0; ðx; yÞ 2 X; t > 0: ð5Þ

This corresponds to the standard PEC boundary conditions for the electromagnetic equations [14]. When the
boundary oX is parallel to one of the coordinate axes it is simple to give a consistent numerical boundary con-
ditions. Let, for example, X be equal to the left half plane. The value of p closest to the boundary is then up-
dated by a difference formula in which u to the right is zero. This is the only boundary condition that is needed
and it is equivalent to setting the material coefficient b and the initial values of u to zero outside the domain.
The idea of generating boundary conditions by redefining the coefficients in this context was introduced in
[16].

The serious problem comes when the normal of the boundary is not parallel to any coordinate axes. Con-
ditions of the type above are then typically applied locally in a stair-case way, see Fig. 2. In the next section we
will give an analytic example for which this standard stair-case boundary approximation generates local Oð1Þ
errors, i.e. Oð1Þ errors in the solution as measured in the maximum norm. The numerical examples in Sections
4 and 5 further illuminates this problem.

A common technique for resolving the difficulty with the boundary conditions is to use unstructured or con-
formal grids that are adjusted to match the boundary. See for example [14,7,10] for finite difference and finite
element versions of such techniques. However, an FDTD method based on the Yee scheme is attractive since
the use of a regular staggered grid is computationally very efficient. Therefore, modifications that are more
local in nature have been introduced. One approach is to use a regular grid and the standard Yee scheme
for most on the domain, switching to a locally conformal grid only close to the boundaries [2,6,8,11,17,20].
A stable hybrid method, switching from the regular FDTD method to a finite element method close to the
boundaries has been designed for the same purpose [13]. In [18], auxiliary points are introduced close to the
boundary and skew difference stencils are employed to avoid differencing across the boundary. Extrapolation
of field values to grid points falling just outside the domain such that the regular stencils can then be applied is
the approach used in [12]. Locally conforming FDTD methods that introduce small irregular cells close to the
boundary often suffer from a reduced CFL condition. In [17,20], local modifications that preserves the CFL
condition of the original scheme are introduced. All these approaches introduce modifications close to the
boundary such that the structure of the Yee scheme is altered. With the structure of the Yee scheme, we here
refer to both the regular staggered grid, and the sizes and shapes of the computational stencils. Hence, the use
of additional grid values for the update in irregular grid cells alters this structure, even if the grid is kept regular.
u=
0

v=0

The boundary C given by 2xþ y ¼ h=4 cutting through the grid, and the corresponding stair-cased boundary (dashed). The stencil
update of the p-point in the example is indicated.
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It is however possible to keep the structure of the Yee scheme (4) in this strict sense and define consistent
boundary conditions for general boundaries by allowing for slightly increased flexibility of the coefficients in
(4). In this way the efficiency of the Yee scheme is not affected. The new boundary approximation is derived in
Section 3 where we also discuss stability and convergence. The approximation is based on the idea of replacing
the boundary conditions by setting material coefficients to zero [16] and the theory of accurate regularization
of discontinuous coefficients, [15]. It can be implemented such that the CFL condition for the new scheme is
the same as that for the Yee scheme without boundaries. The numerical examples in Sections 4 and 5 show
first order convergence in both the maximum norm the discrete 2-norm for these new conditions. It should
be mentioned that the error from the boundary and the interior phase error have different characters, see
[16]. The phase error increases with time and is often dominant. It is therefore in many simulations acceptable
to have lower order approximations at the boundary.

2. Stair-case boundaries

Consider the two dimensional Yee scheme (4) for the wave Eq. (3) with the, so-called, stair-case boundary
condition at a general boundary. The velocity boundary condition at a solid wall is that the normal compo-
nent of the velocity is zero, i.e. n̂ � u ¼ 0 (as given in (5)). The so-called stair-cased boundary condition means
that the true boundary is replaced with a stair-cased one, i.e. one with vertical and horizontal line segments
only. This stair-cased boundary is placed such that vertical parts of the boundary runs through points where
the x-component of the velocity ðuÞ is defined, and here u is set to zero (the vector normal to this part of the
boundary is horizontal). Correspondingly, the horizontal parts of the boundary runs through points where the
y-component of the velocity ðvÞ is defined, and here v is set to zero.

The shortcomings of this treatment has been discussed in a number of publications, [1,3,6–8,12,18]. The
general conclusion has often been that the stair-case boundary reduces the accuracy but we have not seen
any explicit examples illustrating that the method actually is inconsistent and generically produces Oð1Þ local
errors. One reason for missing the inconsistency may be that the 0�, 45� and 90� cases are tested and those
special cases are consistent as explained in the next section (producing first order errors in both maximum
norm and integrated norms). Another reason could be that the standard boundary conditions may still con-
verge in integrated norms even if the convergence is very slow, see Sections 4 and 5.

The following simple counterexample shows that the stair-case boundary condition for the Yee scheme is
not consistent and that there are situations that give order one errors after one time step.

Let aðxÞ � bðxÞ � 1 and
X ¼ fðx; yÞ 2xþ y < h=4g; oX ¼ C ¼ fðx; yÞ 2xþ y ¼ h=4g;

which implies n̂ ¼ ð2; 1Þ=

ffiffiffi
5
p

, and from the boundary condition 2uþ v ¼ 0, ðx; yÞ 2 C. The stationary solution
uðx; yÞ � 1, vðx; yÞ � �2 and pðx; yÞ � P , for any constant P, satisfies the equations and the boundary condi-
tions, and we assume that these values are also given as initial conditions. Consider a grid with a p grid point
at (0,0) a u point at ð�h=2; 0Þ and a v point at ð0;�h=2Þ with Dx ¼ Dy ¼ h, see Fig. 2. The update formula for p

in the first time step will then be based on
p1=2 ¼ p�1=2 þ Dtðð0� u0Þ þ ð0� v0ÞÞ=h ¼ P þ Dt=h 6¼ P :
There is thus an immediate L1 Oð1Þ error in after the first update. The numerical examples in Sections 4 and 5
present the character of this type of error in different settings and in different norms.

Our goal in this paper is to keep the boundary approximation as simple as possible and to preserve the
important virtues of the interior Yee scheme. We will modify only the coefficients and not the structure of
the Yee scheme. We will see later that this modification can be done without affecting the CFL condition
of the original scheme.

3. Derivation of consistent boundary conditions

Imposing the stair-cased boundary condition is equivalent to setting the material coefficient b as well as the
initial conditions for u and v to zero in all points on the stair-cased boundary and outside of the domain. This
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idea of generating boundary conditions was introduced in [16], and is convenient for considering modifications
to increase the accuracy of the approximation.

Let us consider the equation for p, pt ¼ aðux þ vyÞ. With the discretization in (4), aðux þ vyÞ at
ðx; yÞ ¼ ðxjþ1=2; ylþ1=2Þ is approximated by
aðux þ vyÞjjþ1=2;lþ1=2 �
1

h
ajþ1=2;lþ1=2ðujþ1;lþ1=2 � uj;lþ1=2 þ vjþ1=2;lþ1 � vjþ1=2;lÞ:
To shorten the notation, we will write this
aðux þ vyÞjo �
1

h
aoðuE � uW þ vN � vSÞ;
where this notation is also explained in Fig. 3. Here, we assume the material coefficient a to be constant in the
region adjacent to the boundary.

Now, let us assume that the boundary C cuts through the stencil such that uE ¼ vN ¼ 0 (as depicted in
Fig. 4b). We will Taylor expand around a point ðx�; y�Þ on C. We get
1

h
aoðuE � uW þ vN � vSÞ ¼ 1

h
ao 0� ðuðx�; y�Þ þ ðxW � x�Þuxðx�; y�Þ þ ðyW � y�Þuyðx�; y�Þ þOðh2ÞÞ
�

þ0� ðvðx�; y�Þ þ ðxS � x�Þvxðx�; y�Þ þ ðyS � y�Þvyðx�; y�Þ þOðh2ÞÞ
�
: ð6Þ
From Taylor expanding the analytical expression aðux þ vyÞ at xo ¼ ðxjþ1=2; ylþ1=2Þ around ðx�; y�Þ, we get
aðux þ vyÞjo ¼ aoðuxðx�; y�Þ þ vyðx�; y�ÞÞ þOðhÞ: ð7Þ

To examine the error, we need to compare the expansion in (6) to that in (7). The largest term in (6) is of
Oð1=hÞ and is given by
1

h
aoð�uðx�; y�Þ � vðx�; y�ÞÞ:
There is no corresponding term in (7), and we need to examine if this term vanishes.
Let C� be the line tangent to C at ðx�; y�Þ, and denote the angle of C� to the x-axis by a ð0 6 a 6 pÞ. Intro-

duce the coordinate system ðn; gÞ, where n is along C�. In this coordinate system, u ¼ ~un̂þ ~vĝ with the bound-
ary condition u � n̂ ¼ ~v ¼ 0 on C.

We have
u ¼ cos a~uþ sin a~v; v ¼ sin a~uþ cos a~v;
and hence
1

h
aoð�uðx�; y�Þ � vðx�; y�ÞÞ ¼ 1

h
aoð�ðcos aþ sin aÞ~uðn�; g�ÞÞ;
where we have used the fact that ~vðn�; g�Þ ¼ 0, where ðn�; g�Þ are the coordinates for the point ðx�; y�Þ in the
n� g coordinate system.
Fig. 3. The points in the stencil for the update of p (i.e. the evaluation of aðux þ vyÞ) at xo ¼ ðxjþ1=2; ylþ1=2Þ.
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Indeed, with the exception of the special case of a ¼ 3p=4 (within the range of angles for which the stencil
could be cut this way), this term does not vanish and is in general Oð1=hÞ. Hence, the error in the numerical
approximation of aðux þ vyÞ at a point with a stencil intersecting the boundary is Oð1=hÞ. Since in the formula
(4) for updating p the approximation of aðux þ vyÞ is multiplied by Dt the error in p already after one time step
may be Oð1Þ. See also the example in Section 2.

The Yee scheme was introduced in (4). With this discretization, we can not modify the a-coefficient to
improve on the discretization, since it is multiplying the whole expression. Let us instead introduce the mod-
ified discretization
pnþ1=2
jþ1=2; lþ1=2 ¼ pn�1=2

jþ1=2; lþ1=2 þ Dtajþ1=2; lþ1=2 Dþx cð1Þj; lþ1=2un
j; lþ1=2

� �
þ Dþy cð2Þjþ1=2; lv

n
jþ1=2; l

� �� �
;

unþ1
j; lþ1=2 ¼ un

j; lþ1=2 þ Dtbj; lþ1=2D�xp
nþ1=2
jþ1=2; lþ1=2;

vnþ1
jþ1=2; l ¼ vn

jþ1=2; l þ Dtbjþ1=2; lD�yp
nþ1=2
jþ1=2; lþ1=2;

ð8Þ
and let us write
aðux þ vyÞjo �
1

h
ð~aEuE � ~aWuW þ ~aNvN � ~aSvSÞ: ð9Þ
This is the approximation of aðux þ vyÞ in ðx; yÞ ¼ ðxjþ1=2; ylþ1=2Þ in the scheme (8) with ~aE ¼ ajþ1=2;lþ1=2cð1Þjþ1;lþ1=2,
~aW ¼ ajþ1=2;lþ1=2cð1Þj;lþ1=2, ~aN ¼ ajþ1=2;lþ1=2cð2Þjþ1=2;lþ1, and ~aS ¼ ajþ1=2;lþ1=2cð2Þjþ1=2;l. With this, following the same steps
as above, we get that the Oð1=hÞ term in the expansion is given by
1

h
ð�~aWuðx�; y�Þ � ~aSvðx�; y�ÞÞ ¼ 1

h
ð�ð~aW cos aþ ~aS sin aÞ~uðx�; y�ÞÞ:
This term can be made to vanish by choosing cð1Þ and cð2Þ and thus ~aW and ~aS appropriately, such that
~aW cos aþ ~aS sin a ¼ 0: ð10Þ

If this term is made to vanish, the leading order term in the expansion improves with one order and is Oð1Þ, as
given by
� ~aW

h
ððxW � x�Þuxðx�; y�Þ þ ðyW � y�Þuyðx�; y�ÞÞ �

~aS

h
ððxS � x�Þvxðx�; y�Þ þ ðyS � y�Þvyðx�; y�ÞÞ:
This should match the Oð1Þ term in (7), aoðuxðx�; y�Þ þ vyðx�; y�ÞÞ. With only ~aW and ~aS to be determined, we
are not able to fulfill both the consistency condition (10) and to match this Oð1Þ term. Hence, with this struc-
ture of the scheme, with only two u and two v points in the stencil, we can do no better than to eliminate the
very largest error by fulfilling the consistency condition (10). This implicates that we will still have an OðhÞ
error in the numerical solution after one time step, and we should expect a first order error in the numerical
solution to the PDE.

The way the stair-cased boundary is placed in the grid implies that there are no difference formulas for bpx

or bpy intersecting this boundary.
The consistency condition that needs to be fulfilled to avoid an Oð1Þ maximum norm error in the solution

to the PDE depends on the manner in which the boundary intersects the computational stencil. In Fig. 4, the
four cases where the boundary is intersecting the computational stencil in both x and y are indicated. In Fig. 5,
the four cases where the boundary is intersecting the computational stencil either only in x or only in y are
indicated. The consistency conditions are summarized in Table 1. Note that for C a straight line at an angle
a ¼ 0; p=4; p=2 or 3p=4 are special cases, where aN ¼ aS ¼ aW ¼ aE ¼ a obeys the corresponding consistency
condition.

There are also cases where the physical boundary falls outside of the computational stencil, but where the b-
coefficient in one u-point and/or one v-point has been set to zero to define the stair-cased boundary. Such cases
can also be categorized by the cases depicted in Figs. 4 and 5 with the corresponding consistency conditions
listed in Table 1, using the values of the b-coefficients to define inside/outside. The only difference is that the
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point ðx�; y�Þ on C, at which we define a from the slope of the tangent line, will now fall outside of the h� h
square defined by the computational stencil. The stair-cased boundary definition will also modify any case
where C intersects one axes of the computational stencil more than once, and hence, the cases given above
are all the cases that we need to consider.

3.1. Implementation

The implementation of the modified coefficients involves two main steps: First, the b-coefficients should be
set to zero in points outside the actual domain, but also in some extra points such as to define the stair-cased
boundary. Doing only this results in the original stair-cased grid approximation, i.e. it is equivalent to setting u

and v equal to zero at vertical and horizontal parts of the stair-cased boundary, respectively.
Once the b-coefficients have been modified, it is time to modify the coefficients in the stencil for the pressure

update. To do this, we need to identify ‘‘irregular” points for this update, i.e. where the computational stencil
is intersected by the stair-cased boundary. This means that the update involves u and/or v both at points where
b holds its interior value, and where it has been set to zero.
inside inside

inside

inside

Fig. 5. The four different cases for a stencil intersected in either only the x or the y direction.

Table 1
The consistency conditions for the different cases sketched in Figs. 4 and 5, with the notation as given in (9)

Case Consistency condition

XY1 ~aE cos a� ~aS sin a ¼ 0
XY2 ~aW cos aþ ~aS sin a ¼ 0
XY3 ~aE cos aþ ~aN sin a ¼ 0
XY4 ~aW cos a� ~aN sin a ¼ 0
X1 ~aE cos aþ ð~aN � ~aSÞ sin a ¼ 0
X2 ~aW cos a� ð~aN � ~aSÞ sin a ¼ 0
Y1 ð~aE � ~aWÞ cos a� ~aS sin a ¼ 0
Y2 ð~aE � ~aWÞ cos aþ ~aN sin a ¼ 0

The angle a is the angle to the x-axis of the line tangent to the boundary C at the point ðx�; y�Þ ð0 6 a < pÞ. Note: the point ðx�; y�Þ can be
any point on the boundary within the h� h square defined by the computational stencil. A different choice only affects the next order term
in the expansion, and not the consistency condition.

inside inside

inside inside

Fig. 4. The four different cases for a stencil intersected in both the x and y direction.
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After the irregular points have been identified, we must for each point define the modified coefficients, i.e.
we will determine ~aE, ~aW, ~aN and ~aS, such that the applicable condition in Table 1 is fulfilled. This consistency
condition does not however completely determine these coefficients. We choose the coefficients such that each
of them takes a value between zero and the original value of a, such as not to affect the CFL condition for the
scheme. As an example, consider case XY1. Here, a should lie in the range between 0 and p=2 for the curve to
intersect the stencil in this manner. If a 6 p=4, we let ~aS ¼ a, and set ~aE ¼ ðsin a= cos aÞ~aS, and if a > p=4 we
instead set ~aE ¼ a, and set ~aS ¼ ðcos a= sin aÞ~aE. Similarly, for each case listed in Table 1, there is only one of
the a-coefficients that will be modified, which one depends on the value of a. This is given in Tables 18 and 19
in Appendix.

If the boundary C is a straight line cutting through the grid, a is given by the angle of that line to the x-axis
(0 6 a < pÞ. If C is some other curve, a point ðx�; y�Þ on the curve must be selected, and a for the tangent line at
that point computed. This is further discussed in Appendix.

Remember that the exact choice of ðx�; y�Þ does not affect the consistency condition. These coordinates
would however explicitly enter any conditions imposed to eliminate higher order error terms.

3.2. Stability and convergence

In [5] a discrete stability L2 estimate for (4) with variable coefficients is derived. With the more general form
(8) we have to rely on numerical investigations in order to study the stability. In a set of numerical experiments
with different geometries the discrete L2 norm did not increase with time for random initial data when the step
sizes were bounded by an appropriate CFL condition. Furthermore, in all tests, our new numerical scheme
with modified coefficients experiences the same CFL condition as the Yee scheme for problems without
boundaries, which for coefficients that are constant in the interior is Dt=h 6 1=

ffiffiffiffiffiffiffiffi
2ab
p

, [5]. This is illustrated
in Fig. 6. The discrete L2-norm of p is plotted versus the number of time steps for a time step size slightly below
and slightly above this CFL condition. This is done for two different choices of the boundary C: a straight
inclined boundary and an enclosed cylinder. Here, p, u and v are in each grid point initialized by a random
number between 0 and 1 (uniform distribution). Any numerical instability will with these initial conditions
grow much sooner than for smooth initial data. The system is discretized on the domain ½0; 2p	 � ½0; 2p	, with
a spatial step size Dx ¼ Dy ¼ h ¼ 2p=N . The plots clearly illustrate that when the time step obeys the CFL
condition, the norm of the solution is bounded, where as it grows rapidly as soon as the time step exceeds
the CFL condition. Again, we emphasize that this is the same CFL condition as for the problem without
any boundaries, even though the boundary cuts the computational cells into many different ratios.

The error analysis used for the derivation in Section 3 shows that the local truncation error for the modified
scheme is bounded by a constant at boundary points and Oðh2Þ in the interior. Since the number of boundary
points is Oð1=hÞ the discrete L2 norm of the local truncation error is of order Oðh1=2Þ and L2 stability would
then imply consistency with convergence rate Oðh1=2Þ. The result by Gustafsson in [4] is often cited as having
established that there is a gain of one order of accuracy in influence from the truncation error at the boundary
50 100 150 200
0

1

2

3

4

Number of time steps.

β=0.999

β=1.001

50 100 150 200
0

1

2

3

4

Number of time steps.

β=0.999

β=1.001

Fig. 6. The discrete L2-norm of p plotted versus the number of time-steps for N ¼ 80 (solid) and N ¼ 240 (dashed) for different values of b.
The time-step Dt ¼ bh=

ffiffiffiffiffiffiffiffi
2ab
p

, where b ¼ 1 is the CFL limit for the Yee scheme for problems without boundaries.
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to the global error. Even if our case is not covered by that theory, all numerical examples in Sections 4 and 5
clearly show a first order global convergence rate. See also [14] for a discussion on this matter.

Remark. The following example shows that it is in general impossible to achieve more that first order accuracy
even with the generalized Yee type of algorithm with
pnþ1=2
jþ1=2;lþ1=2 ¼ pn�1=2

jþ1=2;lþ1=2 þ
Dt
h
ð~aEun

jþ1;lþ1=2 � ~aWun
j;lþ1=2 þ ~aNvn

jþ1=2;kþ1 � ~aSvn
jþ1=2;kÞ:
Let
X ¼ fðx; yÞ xþ y < h=4g; oX ¼ C ¼ fðx; yÞ xþ y ¼ h=4g;

which implies n̂ ¼ ð1; 1Þ=

ffiffiffi
2
p

, and uþ v ¼ 0 for ðx; yÞ 2 oX.
Consider a grid with a p grid point at ð0; 0Þ, a u point at ð�h=2; 0Þ and a v point at ð0;�h=2Þ. The update

formula for p will then be based on
pnþ1=2
jþ1=2;lþ1=2 ¼ pn�1=2

jþ1=2;lþ1=2 þ
Dt
h
ð~aEun

jþ1;lþ1=2 � ~aSvn
jþ1=2;k:Þ;
where the different a-coefficients are possible in the generalized Yee scheme.
If we now take uðx; y; 0Þ ¼ h=2þ x� 5y and vðx; y; 0Þ ¼ h=2� 5xþ y, this choice satisfies the boundary con-

dition and the ux � vy � 0 condition (the vorticity is invariant under evolution of Eq. (3)). The value of
pnþ1=2

jþ1=2;lþ1=2 � pn�1=2
jþ1=2;lþ1=2 ðn ¼ 0Þ should be 2Dt but the update formula gives 0. This implies that there is a

OðhÞ error in p immediately after the update.
To avoid this OðhÞ error in p, we need to eliminate not only the Oð1=hÞ but also the Oð1Þ error term in the

approximation of aðux þ vyÞ. To do so, the two degrees of freedom we have in choosing ~aE and ~aS are not suf-
ficient and hence this cannot be done without altering the structure of the Yee scheme. This is in contrast to
the one-dimensional case, where all solution components are continuous, and global second order convergence
can be obtained with only a modification of the coefficients [15].

4. Test Case I: A straight inclined boundary

4.1. Constant solutions

Certainly, no numerical method is needed to compute a solution that is constant in both space and time.
But in this context it is valuable to consider such a trivial solution to highlight the errors introduced by the
original stair-cased boundary approximation.

The boundary conditions at a solid wall are n̂ � rp ¼ 0 and ðu; vÞ � n̂ ¼ 0, where n̂ is the vector normal to the
boundary. For a straight inclined boundary, making an angle a ¼ arctanð1=dÞ to the x-axis, the normal vector
is ð�1; dÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
, and the velocity boundary condition is �uþ dv ¼ 0. Hence, u ¼ 1, v ¼ 1=d and p ¼ P for

any constant P is a solution to (3) with these boundary conditions (5).
It was already noted in Section 2, that with the original stair-cased approximation, there is an Oð1Þ L1 error

for p already after the first time step (that example was for the case d ¼ �1=2).
With the modifications of the coefficients, such that the consistency conditions in Table 1 are fulfilled, there

is no error for any a in the numerical approximation in this case. The solution u ¼ 1, v ¼ 1=d and p ¼ P is an
exact solution also to the numerical approximation.

Before we proceed to the more general case of an incoming wave that is being reflected at the boundary, we
will study the errors for the stair-cased approximation in this very simple case. For the special case of d ¼ 
1,
i.e a ¼ p=4 and 3p=4, respectively, the stair-cased boundary approximation obeys the consistency conditions,
and there are no errors in the approximation of these constant solutions. This is also true for a vertical or a
horizontal boundary. (The original stair-cased approximation and the modified approximation coincide in
these cases).

The Yee scheme is staggered not only in space, but also in time, i.e. the numerical approximations of u and v
are available at times tn ¼ nDt, and p at times tnþ1=2 ¼ ðnþ 1=2ÞDt. We want to be able to measure the error for
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Fig. 7. The computational domain with an inclined boundary with a ¼ arctanð1=2Þ. The area in grey is inside the physical domain. The
numerical errors are measured in �X: the part of the region ½p=2; 3p=2	 � ½p=2; 3p=2	 that falls inside the physical domain (colored dark grey
in the picture).
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different grid resolutions at the same points in time. To have the numerical solutions for both u, v and p avail-
able at common points in time, we use a grid refinement factor of 3.

We solve the problem on ½0; 2p	 � ½0; 2p	 with periodic outer boundary conditions. The coefficients are
a ¼ b ¼ �1. We define the inclined boundary by Y ðxÞ ¼ ðx� �xÞ tanðaÞ ¼ ðx� �xÞ=d, with �x ¼ ð1� dÞp=2, that
divides the square into two parts; inside to the left and outside to the right. In order not to include errors from
the outer boundaries in our measurements, we measure the errors over an inner area �X, as indicated in Fig. 7,
and compute up to a limited time. The errors are measured both in maximum norm, and in the discrete L2-
norm. These norms are for a grid function f defined in grid points ðxjþ1=2; ylþ1=2Þ defined as
Table
As Tab

N

100
300
900

Table
Error
a ¼ ar

N

100
300
900

The ex
kf k1 ¼ max
j;l2Jp

jfjþ1=2;lþ1=2j; kf k2 ¼
1

N p

X
j;l2Jp

jfjþ1=2;lþ1=2j2
 !1=2

: ð11Þ
Here, J p is the set of indices ðj; lÞ for which the grid points ðxjþ1=2; ylþ1=2Þ fall inside the check area �X, and Np

are the number of such grid points. The norms for grid functions defined in points ðxj; ylþ1=2Þ and ðxjþ1=2; ylÞ
are defined analogously.

In the following we have used three grid resolutions, with the number of grid points in each dimension
N ¼ 100, 300 and 900. Hence, h ¼ 2p=N , and we set Dt ¼ 0:6h.

In Tables 2 and 3, we present the results for d ¼ 2. From these results, we can see that there is no conver-
gence in maximum norm for u and v, while we measure a convergence order of 0:3 for p. Hence, for u and v,
there is an Oð1Þ error in maximum norm, for this very simple constant solution.
3
le 2, but with the error measured in discrete L2-norm

u v p

Error q Error q Error q

0.0362 – 0.0356 – 0.0330 –
0.0218 0.46 0.0201 0.52 0.0192 0.49
0.0126 0.50 0.0116 0.50 0.0111 0.50

2
for the stair-cased approximation in maximum norm and computed convergence rate q for u, v and p at t ¼ 0:3p with
ctanð1=2Þ

u v p

Error q Error q Error q

0.3027 – 0.2162 – 0.1173 –
0.3068 �0.12 0.1897 0.12 0.0898 0.24
0.3091 �0.01 0.1914 �0.01 0.0628 0.32

act solution is u � 1, v � 1=2, p � 0.



6932 A.-K. Tornberg, B. Engquist / Journal of Computational Physics 227 (2008) 6922–6943
These Oð1Þ errors are created at the stair-cased boundary, and propagate out in the domain. As they do
so, their magnitude decrease, and measuring the error in the L2 norm, we see a h1=2 convergence, for all of u,
v and p. This is a typical behaviour for an arbitrary choice of d (excluding the special cases mentioned
above). As also mentioned above, with modified coefficients, the numerical solution is exact for all choices
of d.

4.2. Time harmonic solutions

We can write the system in (3) as
op
ot
¼ aðr � uÞ; ð12Þ

ou

ot
¼ brp; ð13Þ
where u ¼ ðu; vÞ. Let us consider a complex valued velocity potential V ðx; tÞ, and define
p ¼ 1

b
R

oV
ot

� �
; u ¼ RðrV Þ; ð14Þ
where Rð�Þ indicates the real part. With this, (13) is automatically fulfilled, and (12) becomes
o
2V
ot2
¼ abr2V ¼ c2r2V :
For a velocity potential with harmonic time dependence,
V ðx; y; tÞ ¼ Wðx; yÞe�ixt; ð15Þ

this becomes
ðr2 þ k2ÞW ¼ 0; ð16Þ

where k ¼ x=c. Requiring n̂ � rW ¼ oW=on ¼ 0 at the solid wall, our boundary conditions n̂ � u ¼ 0 and
op=on ¼ 0 are satisfied (according to the definitions in (14)).

Consider an inclined boundary C that makes an angle a to the x-axis. For 0 < a < p we define C by
C ¼ fðx; yÞ : x 2 R; y ¼ Y ðxÞ ¼ ðx� �xÞ tan ag: ð17Þ

For an incoming plane wave eikx that is reflected in the boundary, the solution is
Wðx; yÞ ¼ eikx þ eikx� � eikððx�x�Þ cos 2aþðy�y�Þ sin 2aÞ; ð18Þ

where ðx�; y�Þ is any point on the boundary C. From this, the pressure and velocity components are defined by
(14) together with (15). Hence,
pðx; y; tÞ ¼ 1

b
Rð�ixWðx; yÞe�ixtÞ; uðx; y; tÞ ¼ ðuðx; y; tÞ; vðx; y; tÞÞ ¼ RðrWðx; yÞe�ixtÞ; ð19Þ
where Wðx; yÞ is given in (18).
One example of an analytical time harmonic solution for p is shown in Fig. 8, where also the incoming and

reflected contribution to the total solution are shown. Fig. 9 displays the corresponding analytical solution for
the velocity components u and v. Note that v � 0 for the incoming wave, and there is only a vertical velocity
component for the reflected wave.

4.3. Numerical results

We will present numerical results for an incoming plane wave being reflected at an inclined boundary at an
angle of a ¼ p=6, p=4 and 3p=8. For all results given in this section, we set the wave number of the incoming
wave to k ¼ x=c ¼ 5.



Fig. 8. The analytical solution for p at t ¼ 0:3p for an incoming wave with wave number k ¼ 5. a ¼ p=6, �x ¼ 0:05p.

Fig. 9. The analytical solution for u and v at t ¼ 0:3p. k ¼ 5, a ¼ p=6 and �x ¼ 0:05p.
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As in the constant solution case (Section 4.1), we will use a refinement factor of 3, grid resolutions N ¼ 100,
300 and 900, and Dt ¼ 0:6h, where h ¼ 2p=N . For each a, we will set a �x0, and then for each resolution perform
M ¼ 6 runs, with the C defined by (17) with �x ¼ �xj, j ¼ 1; . . . ;M ,
�xj ¼ �x0 þ h

ffiffiffi
2
p

1:42

j� 1

M � 1
: ð20Þ
The errors are measured in both maximum norm and the discrete L2-norm as compared to the analytical solu-
tion over the part of the region ½p=2; 3p=2	 � ½p=2; 3p=2	 that also falls inside the physical domain. This is to
avoid to measure errors that occur at the outer boundaries. The errors presented in the tables below are the
largest errors incurred for the M ¼ 6 shifts in the grid.

The analytical and numerical solutions for p, u and v for the first shift ðj ¼ 1Þ in (20) for are shown in Figs.
10–12. From these plots, we can see the lower quality of the numerical solution obtained with the original
stair-cased approximation for example in the form of numerical oscillations.

In Tables 4–13, the errors in the numerical results and the convergence rates are given in both maximum
norm and L2-norm for different angles of the inclined boundary (a = p/6, p/4 and 3p/8), both for the original
stair-cased approximation and with modified coefficients (in the a = p/4 case these approximations coincide).
The results for a = p/6 are found in Tables 4–7, for a = p/4 in tables 8–9, and a=3p/8 in Tables 10–13.

As in the case for the constant solution, we can note that with this original stair-cased approximation, there
is an Oð1Þ error in maximum norm for both u and v, both for a ¼ p=6 and a ¼ 3p=8 (Tables 4 and 10). The
convergence rates measured in the discrete L2-norm (Tables 5 and 11) are somewhat higher than the q ¼ 0:5
that was so clearly measured for the constant solution case (Tables 2 and 3).





Table 4
Error in maximum norm and computed convergence rate q at t ¼ 0:3p for u, v and p

N u v p

Error q Error q Error q

100 2.7452 – 3.1743 – 2.9880 –
300 2.7534 �0.003 2.3823 0.26 0.9832 1.01
900 2.6460 0.036 2.1402 0.10 0.5721 0.49

The coefficients have not been modified. Error given is taken as the maximum over M ¼ 6 shifts in the grid according to (20).

Table 5
As Table 4 (coefficients not modified) but for errors measured in the discrete L2-norm

N u v p

Error q Error q Error q

100 0.3487 – 0.3921 – 0.4709 –
300 0.1552 0.74 0.1486 0.88 0.1642 0.96
900 0.0786 0.62 0.0708 0.67 0.0722 0.75

Table 6
As Table 4 (errors in maximum norm) but for modified coefficients

N u v p

Error q Error q Error q

100 1.1016 – 1.8450 – 2.5077 –
300 0.4273 0.86 0.5608 1.08 0.6507 1.23
900 0.1402 1.01 0.1794 0.10 0.2069 1.04

Table 7
As Table 4 but for modified coefficients with errors measured in discrete L2-norm

N u v p

Error q Error q Error q

100 0.2757 – 0.3842 – 0.4906 –
300 0.0964 0.96 0.1212 1.05 0.1519 1.07
900 0.0328 0.98 0.0396 1.02 0.0494 1.02
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Table 8
Error in maximum norm and computed convergence rate q at t ¼ 0:3p for u, v and p

N u v p

Error q Error q Error q

100 0.7044 – 1.0515 – 1.7318 –
300 0.2949 0.79 0.3938 0.89 0.5935 0.97
900 0.0929 1.05 0.1070 1.19 0.1678 1.15

For this special case of a ¼ p=4, the modified and the not modified coefficients coincide. Error is taken as the maximum over 6 shifts in the
grid according to (20).

Table 10
Error in maximum norm and computed convergence rate q at t ¼ 0:3p for u, v and p

N u v p

Error q Error q Error q

100 1.4345 – 1.7683 – 1.2059 –
300 1.1369 0.21 1.4016 0.21 0.4598 0.88
900 1.1130 0.02 1.3805 0.01 0.3409 0.27

The coefficients have not been modified. The error is taken as the maximum over M ¼ 6 shifts in the grid according to (20).

Table 9
As in Table 8 but with the error measured in the discrete L2-norm

N u v p

Error q Error q Error q

100 0.2025 – 0.3097 – 0.4662 –
300 0.0744 0.91 0.1114 0.93 0.1645 0.95
900 0.0258 0.96 0.0309 1.17 0.0469 1.14
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5. Test Case II: A cylinder

5.1. Time harmonic solutions

Consider a cylinder, centered in ð�x; �yÞ with radius R. To derive the analytical solutions we introduce a cylin-
drical coordinate system ðr;/Þ centered in ð�x; �yÞ. Again, we will use the velocity potential introduced in Section
4.2, with the same harmonic time dependence. Hence, we need to solve (16) for Wðx; yÞ subject to the boundary
condition n̂ � rW ¼ oW=on ¼ 0 on the cylinder surface.

We assume an incoming wave W0 ¼ eikx ¼ eikr cos /, and want to solve for W such that W ¼ W0 þW. In cylin-
drical coordinates, (16) reads



Table 11
As Table 10 (coefficients not modified) but for errors measured in the discrete L2-norm

N u v p

Error q Error q Error q

100 0.3433 – 0.2231 – 0.1633 –
300 1.1254 0.92 0.0867 0.86 0.0579 0.94
900 0.0490 0.86 0.0401 0.70 0.0300 0.60

Table 12
As Table 10 (errors in maximum norm) but for modified coefficients

N u v p

Error q Error q Error q

100 1.4477 – 1.5048 – 1.0358 –
300 0.4970 0.97 0.4699 1.06 0.1978 1.51
900 0.1357 1.18 0.1271 1.19 0.0670 0.99

Table 13
As Table 10 but for modified coefficients with errors measured in discrete L2-norm

N u v p

Error q Error q Error q

100 0.3263 – 0.1990 – 0.1528 –
300 0.1121 0.97 0.0614 1.07 0.0332 1.39
900 0.0375 1.00 0.0199 1.02 0.0097 1.12

A.-K. Tornberg, B. Engquist / Journal of Computational Physics 227 (2008) 6922–6943 6937
1

r
o

or
r
oW
or

� �
þ 1

r2

o
2W

o/2
þ k2W ¼ 0: ð21Þ
The boundary condition oW=on ¼ 0 is
oW0

or

				
r¼R

þ oW
or

				
r¼R

¼ 0: ð22Þ
Particular solutions to (21) are given by
W1
n ¼ ½MnH ð1Þn ðkrÞ þ N nH ð2Þn ðkrÞ	 cos n/; W2

n ¼ ½ eM nH ð1Þn ðkrÞ þ eN nH ð2Þn ðkrÞ	 sin n/;
where H ð1Þn ðnÞ and H ð2Þn ðnÞ are the Hankel functions of order n, of the first and second kind, respectively. See
for example [9]. The problem is symmetric with respect to the x-axis, and hence an even function of /, and
there will be no sin n/ terms in the expansion of W. In addition, the radiation condition



Fig. 1
R ¼ 4p
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lim
r!1

ffiffi
r
p oW

or
� ikW

� �
¼ 0
accepts only outgoing waves, and thus Nn ¼ 0 for all n.
We have
Wðr;/Þ ¼
X1
m¼0

MnH ð1Þn ðkrÞ cos n/: ð23Þ
For the incoming wave we have the expansion [9],
W0ðr;/Þ ¼ eikr cos / ¼ J 0ðkrÞ þ 2
X1
n¼1

ðiÞnJ nðkrÞ cos n/;
where J nðnÞ is the Bessel function of order n. The boundary condition (22) at r ¼ R determines the coefficients
Mn in the expansion of W (23). We get,
M0 ¼ �
J 00ðkRÞ

H ð1Þ
0

0 ðkRÞ
; Mn ¼ �

2ðiÞnJ 0nðkRÞ
H ð1Þ

0

n ðkRÞ
; n ¼ 1; . . . ;1:
With W ¼ W0 þW, we can evaluate our analytical solutions for p, u and v for r P R, using (19). In doing this,
the following recursion formulas, that hold both for the Bessel functions J nðnÞ and the Hankel functions
H ð1Þn ðnÞ are useful (again, see [9]):
J 00ðnÞ ¼ �J 1ðnÞ; J 0nðnÞ ¼ �
n
n

J nðnÞ þ J n�1ðnÞ; n P 1:
3. The analytical solution for p, u and v at t ¼ 0:3p. The cylinder location is given by ð�x;�yÞ ¼ ð1þ 1=150; 1�
ffiffiffi
2
p

=200Þp and
=15.
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In Fig. 13, we plot the analytical solutions at t ¼ 0:3p for an incoming wave with wave number k ¼ 5, and
a ¼ �1, b ¼ �1, s.t. c ¼ 1, and hence x ¼ k.

5.2. Numerical results

In this section, we present the numerical results for an incoming plane wave that is reflected at a solid cyl-
inder. The numerical parameters are the same as in Section 4.3. Also here, we set a ¼ b ¼ �1 and consider an
incoming wave with wave number k ¼ 5, for which the analytical solutions were plotted in the previous sec-
tion. The boundary C is defined as a circle with radius R, with the center point ð�x; �yÞ. Again, we want to per-
form simulations for different shifts in the grid. We set R ¼ 4p=15 and �y ¼ ð1�

ffiffiffi
2
p

=200Þp, and the we set
�x0 ¼ ð1þ 1=150Þp and let �x vary over M ¼ 6 shifts in the grid, according to (20). The errors are measured
in both maximum norm and the discrete L2-norm as compared to the analytical solution over the part of
the region ½p=2; 3p=2	 � ½p=2; 3p=2	 that falls inside the physical domain. This is to avoid measuring errors
occurring at the outer boundaries. The errors presented in the Tables 14–17 are the largest errors incurred
for the M ¼ 6 shifts in the grid.
Table 14
Error in maximum norm and computed convergence rate q at t ¼ 0:3p for u, v and p

N u v p

Error q Error q Error q

100 3.4278 – 3.2776 – 2.1158 –
300 2.8908 0.16 2.8489 0.13 0.7881 0.90
900 3.3326 �0.13 3.5508 �0.20 0.5304 0.36

The coefficients have not been modified. Error given is taken as the maximum over M ¼ 6 shifts of �x according to (20). R ¼ 4p=15 and
ð�x0;�yÞ ¼ ð1þ 1=150; 1�

ffiffiffi
2
p

=200Þp.

Table 15
As Table 14 (coefficients not modified) but for errors measured in the discrete L2-norm

N u v p

Error q Error q Error q

100 0.3479 – 0.2208 – 0.3416 –
300 0.1266 0.92 0.0992 0.73 0.1092 1.04
900 0.0578 0.71 0.0512 0.60 0.0487 0.74

Table 16
As Table 14 (errors in maximum norm) but for modified coefficients

N u v p

Error q Error q Error q

100 1.8666 – 1.9906 – 1.9555 –
300 0.5872 1.05 0.5942 1.10 0.4451 1.35
900 0.1992 0.98 0.2138 0.93 0.1367 1.07

Table 17
As Table 14 but for modified coefficients with errors measured in discrete L2-norm

N u v p

Error q Error q Error q

100 0.3138 – 0.2130 – 0.3430 –
300 0.1000 1.04 0.0573 1.20 0.0973 1.15
900 0.0333 1.00 0.0186 1.03 0.0300 1.07
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Fig. 18. Close-ups of the numerical solutions for v shown in Fig. 16.
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In Figs. 14–16 analytical and numerical results for p, u and v are shown, and a close-up of the numerical
solutions for u and v are shown in Figs. 17 and 18. We can note that with the original stair-cased approxima-
tion, the numerical solution is of visibly lower quality in terms of numerical oscillations compared to when the
coefficients are modified. This is especially true for v, which holds no contribution from the incoming wave,
but only from the reflected outgoing wave.

6. Conclusions

A new set of boundary conditions for the Yee scheme in two-dimensions on structured grids is presented.
The conditions are of the same simple form as the so-called stair-case boundary conditions for general geom-
etries and the modification fits well into the structure of existing Yee codes. We show that the standard stair-
case conditions give local Oð1Þ errors in many cases but our new conditions are consistent and result in first
order convergence rate. Furthermore the new numerical solutions do not show the same numerical grid oscil-
lations as solutions based on the stair-case conditions. The CFL condition for the new scheme is the same as
that for the Yee scheme without boundaries, and hence the new scheme retains the full efficiency of the Yee
scheme.

The boundary technique introduced in this paper extends formally to three dimensions, but more investi-
gations are needed to consider the practical details.
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Appendix.

For each case of the intersections depicted in Figs. 4 and 5, we only need to modify one coefficient to fulfill
the consistency condition. given in Table 1. Which coefficient we choose to modify depends on the case, and
the angle a. The modified coefficient for all cases is listed in Tables 18 and 19. The form of the factor in the
modification, combined with the range of a, ensures that each modified coefficient can be written as b � a,
where 0 6 b 6 1. This gives a sound implementation with the original bounds on the coefficients. As we have
seen in numerical experiments (Section 3.2), the resulting scheme has a CFL condition that is the same as for
the original Yee scheme without boundaries.

The angle a is the angle to the x-axis of the line tangent to the boundary at the point ðx�; y�Þ ð0 6 a < pÞ,
where the point ðx�; y�Þ can be any point on the boundary within the h� h square defined by the computa-



Table 19
The table gives the one coefficient in the approximation (9) that is modified for each case of intersection depicted in Fig. 5

Case Range of a Coefficient modified

X1 a2[p/4,p/2] ~aN ¼ ð1� cos a
sin aÞa

a2(p/2,3p/4] ~aS ¼ ð1þ cos a
sin aÞa

X2 a2[p/4,p/2] ~aS ¼ ð1� cos a
sin aÞa

a2(p/2,3p/4] ~aN ¼ ð1þ cos a
sin aÞa

Y1 a2[0,p/4] ~aW ¼ ð1� sin a
cos aÞa

a2[3p/4,p) ~aE ¼ ð1þ sin a
cos aÞa

Y2 a2[0,p/4] ~aE ¼ ð1� sin a
cos aÞa

a2[3p/4,p) ~aW ¼ ð1þ sin a
cos aÞa

With these modifications, the consistency conditions given in Table 1 are fulfilled.

Table 18
The table gives the one coefficient in the approximation (9) that is modified for each case of intersection depicted in Fig. 4

Case Range of a Coefficient modified

XY1 a2[0,p/4] ~aE ¼ sin a
cos a a

a2(p/4,p/2] ~aS ¼ cos a
sin a a

XY2 a2[p/2,3p/4] ~aS ¼ cos a
sin a a

a2(3p/4,p) ~aW ¼ sin a
cos a a

XY3 a2[p/2,3p/4] ~aN ¼ � cos a
sin a a

a2(3p/4,p) ~aE ¼ � sin a
cos a a

XY4 a2[0,p/4] ~aW ¼ � sin a
cos a a

a2(p/4,p/2] ~aN ¼ � cos a
sin a a

With these modifications, the consistency conditions given in Table 1 are fulfilled.
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tional stencil. If the boundary C is a straight line cutting through the grid, a is naturally given by the angle of
that line to the x-axis. If C is curved, a point ðx�; y�Þ on C must be selected, and a for the tangent line at that
point computed. Here, we have a freedom in which point on the curve that we select. In some cases, the tan-
gent angle a will not be within the appropriate bounds (Tables 18 and 19) for all possible choices of ðx�; y�Þ.
However, it is always possible to select a point ðx�; y�Þ such that it is.

For cases XY1 and XY4, we compute ðx�; y�Þ as the intersection of C and the line running through
ðxjþ1=2; ylþ1=2Þ with a slope of �1. For cases XY2 and XY3, we do the same, but using a line with a slope
of 1. Assuming that the boundary is smooth, and that its curvature is not too high relative to the grid reso-
lution, this will yield values of a within the appropriate range given in Table 18.

When the stencil is only intersected in x (case X1 and X2), we take y� ¼ ylþ1=2 and compute x� as the point
where C intersects this horizontal line. Correspondingly, for case Y1 and Y2, we let x� ¼ xjþ1=2 and compute
y�. For these cases, where the stencil is cut only in x or y, it is however possible that a for the selected ðx�; y�Þ
falls outside of the appropriate range, as given in Table 19. We then use an alternate strategy, as used in the
cases where the stencil is cut both in x and y, to compute a new ðx�; y�Þ and corresponding a.
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